100W Power Audio Amplifier

100W Power Audio Amplifier

Please follow this construction tips for better result:
The output transistors and thermal compensator (2SC1567) will need to be mounted on a common heat sink – a finned unit measuring 5 in. high by 8 in. wide with 1.25 in fins should do nicely for one channel. (They look nice if you make the sides of the case out of them). Most normal applications won’t require more cooling than this. The reason the 2SC1567 was chosen for the output bias regulator is because it is fully insulated – the ECG version will require additional mounting hardware. TO-3 hardware for the outputs is cheap and easy to get.

The driver transistors and voltage amps (2SC3344/2SA1011 pairs) will all require heatsinking as well. Individual TO-220 heat sinks on the circuit board will suffice – the voltage amps dissipate about 1.4 watts each. A common piece of 1/8 in. thick 1 in. wide X 4in. long angle aluminum will suffice for all 4 on each channel, but bear in mind that it must be oriented to take advantage of natural convection, and the transistors must be insualted.
Keep the imput grounds separate from everything else, and return them at ONE point. Failure to do so WILL result in high distortion (5% or so), or even oscillation.

The output stage bias should be set to about 25 milliamps in the output transistors. This value takes a while to stabilize, and you may have to monitor it over an hour or so during initial setup. To measure it, measure the voltage across the emitter resistor and use Ohm’s law. This way, you can check the current sharing in the parallel output transistors at the same time and change them if there is a serious discrepancy. With parts of the same date code, they should not be off by more than 10% after it has warmed up. Higher output stage biases can be used, but it takes more care in setting it. If you want an idle current of more than 50 milliamps per side, increase the value of the emitter resistors.

This schematic diagram come from circuit: 100W RMS Audio Amplifier.
Go to that page to read the explanation about above circuit design.

In the electrical sector, a schematic diagram is usually used to describe the design or model of equipment. Schematic diagrams are usually utilized for the maintenance and repair of electronic and electromechanical devices / units. Original schematics were made by hand, using standardized templates or pre-printed adhesive symbols, but nowadays Electrical CAD computer software is often used.

In electronic design automation, until the 1980s schematics were virtually the only formal representation for circuits. More lately, using the progress of computer system technology, other representations were introduced and specialized computer languages were developed, because with the explosive development of the complexity of electronic circuits, classic schematics are getting less practical. As an example, hardware description languages are indispensable for contemporary digital circuit design.

Leave a Reply

Your email address will not be published. Required fields are marked *